Exercise 38

Find $y^{\prime \prime}$ by implicit differentiation.

$$
x^{3}-y^{3}=7
$$

Solution

Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{3}-y^{3}\right)=\frac{d}{d x}(7) \\
\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(y^{3}\right)=0 \\
\left(3 x^{2}\right)-\left(3 y^{2}\right) \cdot \frac{d}{d x}(y)=0 \\
3 x^{2}-3 y^{2} y^{\prime}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=\frac{x^{2}}{y^{2}}
$$

Differentiate both sides with respect to x to get $y^{\prime \prime}$.

$$
\begin{aligned}
\frac{d}{d x}\left(y^{\prime}\right) & =\frac{d}{d x}\left(\frac{x^{2}}{y^{2}}\right) \\
y^{\prime \prime} & =\frac{\left[\frac{d}{d x}\left(x^{2}\right)\right] y^{2}-\left[\frac{d}{d x}\left(y^{2}\right)\right] x^{2}}{\left(y^{2}\right)^{2}} \\
& =\frac{(2 x) y^{2}-\left[(2 y) \cdot \frac{d}{d x}(y)\right] x^{2}}{y^{4}} \\
& =\frac{2 x y^{2}-\left(2 y y^{\prime}\right) x^{2}}{y^{4}} \\
& =\frac{2 x y-2 x^{2} y^{\prime}}{y^{3}} \\
& =\frac{2 x y-2 x^{2}\left(\frac{x^{2}}{y^{2}}\right)}{y^{3}} \cdot \frac{y^{2}}{y^{2}} \\
& =\frac{2 x y^{3}-2 x^{4}}{y^{5}} \\
& =\frac{2 x\left(y^{3}-x^{3}\right)}{y^{5}} \\
& =\frac{2 x(-7)}{y^{5}} \\
& =-\frac{14 x}{y^{5}}
\end{aligned}
$$

